PRESS
View All Blog Postings
How can I repair footprints in my concrete sidewalk?
Unfortunately, there isn’t a quick fix for addressing footprints in your sidewalk. Your best bet is to remove and repour the affected panel (section between control joints). There are other options out there including filling the footprint in with a repair material (e.g. sand filled epoxy), patching the area, or grinding down the area, but these repairs will be noticeable and/or may require follow-up repairs down the road.
Window Condensation
An all too common building problem involves the formation of condensation (water) on the interior surfaces of windows. This can be caused by a variety of factors including deficiencies with the windows, the use of heavy window treatments that prevent air circulation on window surfaces, and excess moisture in building interiors. Sometimes, when too much condensation is present, water may even drip down the wall into the wall cavity or onto the floor to cause water damage, growth of mold and mildew, staining, and other problems.
Normal human activities (such as respiration, bathing, laundering, cleaning, cooking, pets, houseplants, aquariums, etc.) produce water vapor that must be accounted for in the design of the mechanical (heating, ventilation, and air conditioning or HVAC) systems for the building. In today’s air-tight buildings, window condensation can result from insufficient fresh air. Unless fresh air is introduced into conditioned space, humidity can accumulate until, in cold weather, the temperature of the interior window surfaces becomes so low that the air at the surfaces become saturated, causing water, or even ice, to form.
Why does fresh air help to reduce humidity? In a cold weather scenario, the outside air is dry and by introducing sufficient fresh air (increased ventilation) into the building, the humidity is diluted and reduced. However, too much fresh air may not always be a good thing during the heating season. In addition to high energy cost, too much fresh air may also render the space too dry for a comfortable environment.
Sometimes the issue may not be as simple as it looks. Improperly designed or installed HVAC systems can fail to remove the moisture and cause elevated indoor humidity. Undersized systems could produce inadequate air movement to remove water vapor. Oversized systems could prematurely satisfy heating and cooling demands, resulting in short-cycling, and reduced air movement. It is important to conduct a thorough investigation to identify the real cause of condensation issues in order to develop a successful and cost-effective solution.
ETC has first-hand experience with these problems and the methods to successfully correct them. Our mechanical engineering staff has the ability to identify and correct ventilation issues involving condensation or other concerns
No Need For Ice Melt?
Imagine a winter without the need for ice melt. Researchers at Drexel, Purdue and Oregon State University are working with concrete admixtures to hopefully make this a reality. Their research includes the addition of phase changing materials such as paraffin, coconut, or palm oils into the concrete mix and has proven to melt snow in certain conditions. The phase change materials release thermal energy as they solidify, meaning as the temperature drops, they release heat, which melts the snow. The inclusion of the phase changing materials in the concrete mix result in a one-time cost at construction rather than reoccurring costs, such as electricity, in cases where heating elements are embedded in concrete for snow melting. More information on the research can be found at the following link: http://drexel.edu/now/archive/2017/September/self-melting-concrete-roads/.
The Researchers state that this technology is ideal for the Mid-Atlantic region as the performance of the phase changing materials works best where the temperature frequently moves above and below freezing. There are many benefits to eliminating the use of deicing chemicals. Reduced operating costs and the reduced deterioration of concrete structures are the most beneficial to Building Owners. While to the environment, eliminating the use of traditional deicers will help keep the millions of tons of salt used in the region during a typical winter from entering the local waterways.
The new mix additives are expected to begin large scale testing in early 2018. While probably a few years away from widespread commercial implementation, it is nice to think that one day we may never need to clear our sidewalk of snow.
Attack of the Road Salts
Parking garages in this region are attacked by road salts and water throughout much of the year. The cost to repair deteriorated concrete can be quite high and the project can cause significant inconvenience to garage users. So, as part of a parking garage restoration project, we recommend and our clients tend to include, application of a vehicular-traffic-bearing membrane on the structural slabs to help protect their investment and extend the service life of the garage.
There are two basic classes of products commonly used to protect garage slabs, one of which is penetrating sealers. Penetrating sealers include materials such as silanes and siloxanes, which are silicone-based water repellants. These compounds penetrate into the concrete and react with the silica to create a water repellant barrier that also retards chloride migration.
Penetrating sealers are breathable so they do not create a vapor barrier and are relatively inexpensive. However, they do not seal cracks and require frequent reapplication as their effectiveness decreases with wear and time. These materials usually need to be renewed on a three to five year schedule.
The other class is traffic-bearing membranes, which are liquid-applied materials in several layers of cementitious, epoxy, or urethane compounds. These systems are all relatively thick (up to about 90 mils) and are designed with the properties needed to withstand the destructive forces imposed by vehicles tires.
SAFETY ISSUE: Fireplace & Chimney Maintenance
Incomplete combustion of wood in fireplaces creates a buildup of flammable oils (creosote) in chimney flues, which can contribute to chimney or building fires. Only dry, seasoned wood (preferably hardwood) should be burned in fireplaces. Green and/or water saturated wood burns at a lower temperature and less completely than dry, seasoned wood and poses a greater potential for creosote deposition. Coniferous woods (pine, fir, spruce, etc.) should not be used. They tend to be highly resinous and will deposit more material than hardwoods. Household trash or other items should never be burned in fireplaces.
Artificial logs should only be used in accordance with manufacturers’ instructions and limitations. Most such products are intended to be burned only one at a time. Artificial logs vary in composition from hardwood fibers (sawdust or other sawmill waste) combined with wax or other binders, to petroleum wax (paraffin) mixed with various recycled materials. As a general rule, artificial logs should not be used unless the composition and burning characteristics of a specific product are fully described and deemed acceptable. Plastics, unidentified composites, or other materials of questionable makeup should be avoided.
Fireboxes require occasional cleaning/removal of ashes. Ashes should only be removed when absolutely no embers are present. Because embers can remain undetected long after a fire is out, ashes should only be placed into fireproof, metal containers.
Chimneys should be periodically inspected and cleaned, the frequency of which depends on fireplace use. Annual inspection is recommended for fireplaces that are used regularly. Cleaning may not be necessary at every inspection interval. It should be noted that chemical cleaners (cleaning logs, fire additives, etc.) should not be considered equal to professional cleaning.
Some products incorporate catalytic chemicals that react with the creosote and cause it to soften, flake and debond; however, the dislodged material can accumulate on shelves or other chimney offsets. They also tend to react only with the outer layer of creosote and are only partly effective in the presence of heavy buildups. They also may have no appreciable effect on soot, or residue from artificial logs.
Some products (which employ copper or other metal salts) rely on the rapid expansion of gas created when the salts are burned to dislodge deposited material. The effectiveness of those products is questionable, particularly with respect to heavy accumulations.
Creating A Desirable Break Room
Looking for that perfect employee gift this season? How about creating an enjoyable break room that will be used year-round.
Here is an example of space once confined by full height walls and only indoor lighting. Now, after adding frameless glass panels, it allows for natural daylight, as well as an open concept feel. A break room once used only for coffee cup refills, is now the center hub of the office.
Contact Shabbir Kazmi, AIA to discuss your break room needs.
OSHA Mandated Rope Anchor Load Testing Deadline
Before any rope descent system (i.e., window washing boatswain chair) is used on a building, OSHA now requires that each anchor be identified, tested, certified, and maintained so it is capable of supporting at least 5,000 pounds in any direction.
Did all your anchors pass the test?
The OSHA set November 20, 2017 deadline for physical load testing of these anchors has passed. (29 CFR 1910.27(b)(1)(iii)).
Did you make the deadline?
We loaded anchors of many different configurations and found that not all anchors passed this stringent test. If you have any anchors that have not been subjected to this testing in the last 10 years, they must be load tested and certified by a qualified person before they are used. This regulation also seems to apply to new anchors that were installed after the November 20 deadline and not just older anchors.
Don’t postpone your scheduled winter or spring window washing work, get your anchors tested soon. Call us @ 410-312-4761 or 703-450-622o | mindy@etc-web.com
EIFS – Not So Pretty
On a recent project, we discovered a “scary” sight – an Exterior Insulation and Finish System (EIFS) that was not installed properly. The exposed wall revealed channelized white foam insulation, an inconsistently placed liquid waterproofing membrane applied on the sheathing, several different brands of materials, and incompatible asphaltic flashing to cover the building facade.
The manufacturer issued a warranty for a drainable system, but no weep holes were installed around the windows and doors to allow the water to drain. This cobbled together assembly is not only a problem for keeping the building watertight, but the warranty seems to be invalid.
This highlights the need for field inspections by Certified EIFS Inspectors (CEI) and installation by Certified EIFS Mechanics (CEM) and Contractors as designated by the AWCI (Association of the Wall and Ceiling Industry) to help ensure that the system is installed and performs as it was intended.
ETC has a Doggone Good Reason
ETC and its employees are pleased to donate funds to Canine Companions for Independence throughout the year. This worthy organization provides assistance dogs free of charge to people with disabilities. We are proud to call CCI our designated charity. Learn more at cci.org.
Timber Retaining Walls
Preservative (pressure) treated wood is among the most common materials used in the construction of retaining walls. Ground-contact rated is standard for that use, but a GC label doesn’t tell the entire story. The important factor is preservative retention – the amount of chemical that remains in the wood after treatment, usually expressed as pounds per cubic foot or PCF. Optimum levels vary with the chemicals used and some products considered suitable for ground contact have retention levels that are less than desirable for retaining walls.
The American Wood Protection Association (AWPA) lists three categories for ground contact use, General Use (UC4A), Heavy Duty (UC4B) and Extreme Duty (UC4C). Heavy Duty protection would be suitable for most circumstances. Extreme Duty would be appropriate in such locations as freshwater lake or pond side walls. AWPA has separate categories for use in marine (saltwater) environments.
The timbers most used in retaining walls measure six by six or eight by eight inches in cross section and full preservative saturation is difficult to achieve in material that thick. Consequently, the central portions are less protected and decay (rot) can occur deep within the wood before there’s any visible evidence of distress. So-called Ground-Contact-rated, forty-year timbers can experience advanced deterioration within as few as fifteen years, while appearing sound.
In order to truly evaluate timber retaining walls it’s often necessary to sample the material by extracting full-depth cores with a specialty bit. Usually, a simple visual examination is sufficient to determine the level of degradation. Sounding (with a hammer) can reveal advanced decay. Rot reduces wood to dust, which will produce a hollow sound if sufficient wood has been compromised.
Inadequate Drainage
Fall weather has revealed many areaways that have inadequate drainage because the drain grate clogs easily. It often takes just a leaf of two to slow down the flow on these small grates. Provide more margin against rising water and flooding interiors by installing larger drains. Not only will the larger drain remove water faster, it can become partially clogged and still have adequate flow to keep the water from entering under the door.
Canine Invitational Cup Winners!
Thank you to our industry friends, Ev-Air Tight, Culbertson, Function Enterprises, CP&R,CWS, East Coast Building Services and Manganaro for participating in ETC’s mini-golf tournament. Your contributions helped raise funds for the Washington Chapter Canine Companions for Independence. The winner of the first-ever Canine Invitational Cup goes to….Ev-Air Tight!
Congratulations on winning the beautiful plastic trophy, as well as bragging rights of course!